

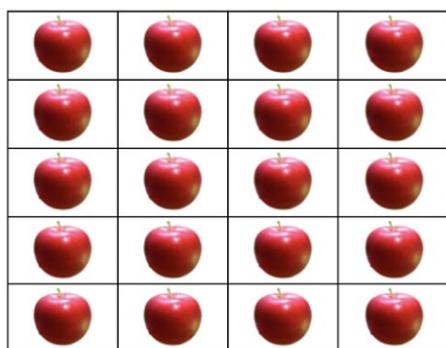
Counting in fives

Here is a counting pattern:

5, 10, 15, 20, 25, 30, 35, ...

This pattern **goes up in fives**.

From each number, we **add 5** to get the next number.


Can you count on in fives to get to **60**?

Groups of 5

This array has 5 apples in each column.

There are 4 columns, making 4 lots of 5.

As a repeated addition this is written:

$$5 + 5 + 5 + 5$$

Or 4 lots of 5 is the same as **4 x 5** and **4 x 5 = 20**.

1 lot of 5 = 5	2 lots of 5 = 10	3 lots of 5 = 15	4 lots of 5 = 20
1 x 5 = 5	2 x 5 = 10	3 x 5 = 15	4 x 5 = 20

This set of number facts are from the 5 times table.

How many 5p coins make 35p?

Through repeated addition this is:

$$5p + 5p + 5p + 5p + 5p + 5p + 5p = 35p$$

Or you could do this through multiplication:

$$7 \times 5 = 35$$

$$\text{so } 7 \times 5p = \underline{35p}$$

Top tip!

Top tip

Remember that every number in the 5 times table always ends in **0 or 5**.